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Speech and voice technologies are experiencing a profound review as new paradigms are sought to

overcome some specific problems which cannot be completely solved by classical approaches.

Neuromorphic Speech Processing is an emerging area in which research is turning the face to understand

the natural neural processing of speech by the Human Auditory System in order to capture the basic

mechanisms solving difficult tasks in an efficient way. In the present paper a further step ahead is

presented in the approach to mimic basic neural speech processing by simple neuromorphic units

standing on previous work to show how formant dynamics – and henceforth consonantal features – can

be detected by using a general neuromorphic unit which can mimic the functionality of certain neurons

found in the upper auditory pathways. Using these simple building blocks a General Speech Processing

Architecture can be synthesized as a layered structure. Results from different simulation stages are

provided as well as a discussion on implementation details. Conclusions and future work are oriented to

describe the functionality to be covered in the next research steps.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Neuromorphic Speech Processing is an emerging field which has
attracted the attention of many researchers looking for new
paradigms helping to better understand the underlying brain
processes involved in speech perception, comprehension and
production [10,21]. This study can also be extended to cognitive
audio (voice and sound processing by humans in general) when
aspects as emotion or speaker recognition are concerned or in scene
analysis [20,21,30]. The present paper is aimed to extend previous
work on Neuromorphic Speech Processing [8] using a layered
architecture of artificial Neuron-like Units derived from the
functionality of the main types of neurons [14] found in the
auditory pathways from the cochea to the primary and secondary
auditory cortex [9]. In these early stages the typology a General
Neuromorphic Computing Unit (GNCU) was defined using well-
known paradigms from mask Image Processing [13]. It was also
shown in the referred previous work [9] how one of these Mask
Units can be adapted to model different processes as Lateral
Inhibition to enhance Formant Detection. It was also shown how
using different masks the GNCU could be configured to detect
formant dynamics (ascending or descending resonance patterns
ll rights reserved.

: +34 91 336 66 01.
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appearing in certain speech sounds). The present work is intended
to show how based on this GNCU a general layered architecture can
be defined for the labelling of phonemes from formant positions
and dynamics, advancing one step in the definition of a fully Bio-
inspired Speech Processing Architecture. The paper is organized as
follows: A brief description of formants and formant dynamics is
given in Section 2. In Section 3 the different units found in the
Auditory Pathway are defined accordingly to their functionality.
The structure of the GNCU is shown to mimic the different units of
interest for Speech Processing, and a Neuromorphic Speech Proces-
sing Architecture based on these units is presented. The purpose of
Section 4 is to introduce plausible neural circuits to implement
specific functions and comment results from simulations. Conclu-
sions and future work are presented in Section 5.
2. Perceiving the dynamic nature of speech

Speech can be defined as the result of a complex interaction of
the sound produced by either the vocal folds (pseudo-periodic
vibration found in voiced speech) or the turbulent flow of air
through constrictions along the vocal tract (broad-band a-periodic
noise-like signal found in unvoiced speech). The articulation
capabilities of the vocal and nasal tracts reduce or enhance the
frequency contents of the resulting sound, which is perceived by
the human auditory system as a flowing stream of stimuli
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distributed accordingly with the dominant frequencies present in
it. An injection of complex spike-like neural stimuli is released from
the cochlea to the auditory nerve fibres [1] which are then
processed at the level of the Brain Stem and distributed to the
auditory primary and secondary areas over the cortex. Speech
perception is a complex process which results as a combination of
different pattern recognition tasks carried out by neural structures
hidden in these areas.

Two important observations may be highlighted in speech
perception: That speech sounds are dominated by certain
enhanced bands of frequencies called formants in a broad sense,
and that the assignment of meaning is derived both from dominant
frequency combinations as well as from the dynamic changes
observed in these combinations in time. Therefore speech percep-
tion can be seen as a complex parsing problem of time–frequency
features. The most meaningful formants in message coding are the
first two, designated classically as f1 and f2 in order of increasing
frequency. f1 is the lowest, which for male voice may roughly lay in
the range of 250–700 Hz, whilst f2 sweeps a wider range, from 700
to 2300 Hz. To serve as a self-explaining example, as the present
study is focussed on the dynamic features of speech, Fig. 1 shows
the spectrogram of a voiced speech frame with rapid formant
changes. Formants are characterized in this spectrogram by
Fig. 1. Top: Adaptive Lineal Prediction (ALP) Spectrogram corresponding to the

speech frame /Where were you while you were away/, phonetically described as

[hoeNoeNjuhoaeljuoeNaoej] uttered by a male speaker. The IPA has been used for

annotation [3,4]. Bottom: Vowel triangle showing the five reference vowels in

English framing the formant trajectories of the utterance.
brighter bands, whereas the darker areas indicate energy valleys.
Peak bands are especially interesting because they can be asso-
ciated with formants or resonances of the articulation structures,
and the perceptual processing of the auditory pathways work
detecting dominant frequencies related to formants. What can be
observed in the figure is that the first formant is oscillating between
350 and 650 Hz, whereas the second formant experiences abrupt
fluctuations between 700 and 2200 Hz. Higher positions of the
second formant point to front vowel-like sounds, as [e, i, j], whereas
low ones correspond to back vowel-like sounds as [u, o]. The
positions of [e, i, a, u] correspond to the zones where the formant
positions are stable or slightly changing, as around the peaks of f2

(segments in time: 0.15–0.17, 0.45–0.50, 0.7–0.75, 0.85–0.95,
1.15–1.17, 1.25–1.30, 1.38–1.42) whereas the positions of [j, o]
correspond to the complementary intervals where strong dynamic
changes of formant positions can be observed. When plotting f2 vs
f1 formant trajectories appear as clouds of dots showing the vowel-
like structure of the message. The vertices mark the positions of the
extreme front [i], back [u] and middle [a] vowels. Stable positions
produce clouds of dots where formant plots are denser, whereas
dynamic or changing positions produce thin trajectories, appre-
ciated in the figure as bead-like lines. Formant transitions from
stable characteristic frequencies (CF) to new CF positions (or virtual

loci [29]) are known as frequency modulation (FM) components.
3. Neuromorphic computing for speech processing

The structure responsible for speech perception is the auditory
system, described in Fig. 2 as a chain of different sub-systems
integrated by the peripheral auditory system (outer, middle and inner
ear) and the higher auditory centres. The most important organ of the
peripheral auditory system is the cochlea (inner ear), which carries out
the separation in frequency and time of the different components of
sound and their transduction from mechanical to neural activity [1].
Electrical impulses propagate from the cochlea to higher neural centres
through auditory nerve fibres with different characteristic frequencies
(CF) responding to the spectral components (or harmonics f0, f1, f2y) of
speech. Within the cochlear nucleus (CN) different types of neurons are
specialized in specific processing [15] as described below. The cochlear
nucleus feeds information to the Olivar Complex, where sound
localization is derived from inter-aural differences, and to the inferior
colliculus (IC) organized in spherical layers with orthogonal iso-
frequency bands. Delay lines are found in this structure to detect
temporal features in acoustic signals, which are of especial relevance
for this study as will be seen in the sequel. The thalamus (Medial
Geniculate Body) acts as a last relay station, and as a tono-topic mapper
of information to the primary auditory cortex as ordered feature maps.

The functionality of the different types of neurons found in the
auditory pathways is the following:
�
 Pl: Primary-like units. Reproduce the firing stream found at its
input, acting as relay stages.

�
 On: Onset units. Detect the leading edge of a new firing stream,

and separate the background activity from a new stimulus
activity.

�
 Ch: Chopper units. Specialized in dividing a continuous stimulus

into slices of different size.

�
 Pb: Pauser units. Act as delay lines, firing sometime after the

stimulus onset.

�
 CF: Characteristic frequency units. Respond to different narrow

bands of frequencies centred in a specific one and are tono-
topically organized.

�
 FM: Frequency modulation units. Specialized in detecting

changes in frequency. Their role is crucial in detecting dynamic
speech features.



Fig. 2. Speech Perception Model. Top: main auditory pathways in the Peripheral and Central Auditory Centres (adapted from [8]). Bottom: simplified main structures found in

the Auditory Pathways.

Fig. 3. Mask-based Neuromorphic Computing Units. Top: structure of a general unit. Bottom: 3�3 masks for feature detection on the formant spectrogram. Each mask is

labelled with the corresponding octal code (most significant bits: bottom-right).

P. Gómez-Vilda et al. / Neurocomputing 74 (2011) 1191–1202 1193
�
 NB: Noise burst units. React to broad-band stimuli, as those
found in unvoiced consonants.

�
 Bi: Binaural units. Specific of binaural hearing by contrasting phase-

shifted stimuli. They are found mainly in the inferior colliculus.
�
 Cl: Columnar units. Organized linearly in narrow columns
through the layers of the auditory cortex. Their function may
be related with short-time memory [19], although their role is to
be further clarified.



Fig. 4. Neuromorphic Speech Processing Architecture for a mono-aural channel. Each neuron is implemented as a GNCU of the sort given in Fig. 3, represented by its mask.

Blocks labelled as (
R

) and (e) stand for integrators and nonlinear thresholds.

Table 1
Nuclear set of consonant phonemes and some of their associated phonetic features.

IPA: International Phonetic Alphabet. KB: Kirshenbaum Code. O/N: oral vs nasal.

V/U: voiced versus unvoiced. DC: degree of closure (s: stop, f: fricative). AP:

articulation place (bl: bilabial, a: alveolar, p: palatal, v- velar, ld: labiodental, d:

dental, da: dentoalveolar, pa: palatoalveolar). O/R: oval vs round. FM1: dynamics of

the first formant (a: ascending, d:descending). FM2: Idem of the second formant. CF:

stable formants. NB: noise bursts (s: spread, mh: medium-high, h: high, ml:

medium-low.

IPA p t c k b d ĵ g f y
R

x b j z g
KB p t c k b d J g f T S x B D Z G

O/N o o o o o o o o o o o o o o o o

V/U u u u u v v v v u u u u v v v v

DC s s s s s s s s f f f f f f f f

AP bl a p v bl a p v ld d p v bl da pa v

O/R – – – – – – – – – – – – – – – –

FM1 a a a n a a a n a a a n a a a n

FM2 a n d n a n d n a n d n a n d n

CF – – – – – – – – – – – – – – – –

NB s mh h ml – – – – s mh h ml – – – –

Fig. 5. Formant profiling from LPC broad-band spectrogram in Fig. 1 (top) by lateral

inhibition units. Structure of feed-forward inhibition units and connections. Dark

synapses mean inhibition, white ones stand for excitation. Pre-threshold (A) and

post-threshold (B) spots have been clipped to monitor results.
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�
 Ec: Extensive connectors. The outer layers of the auditory cortex
seem dominated by extensive connections among distant
columns.
The present study is aimed to simulate some of the functionality

of the auditory system to detect speech dynamics; therefore, time–
frequency representations have to be taken as a source. Some
possibilities are found in the literature to produce these repre-
sentations, as filter banks, gammatones, FFT or LPC, among others.



Fig. 7. Positive and Negative Slope Tracking Units. Pauser units (A) are activated

by m-Channel Units. Pausers respond with a delay j time delay intervals (t)

different for each unit. These activate spatial summation units (B). The positive or

negative slope-tracking capability of the unit is based on delay and channel

configurations.
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The present work is based in formant-like pattern detection on LPC
spectrograms [6] as the one in Fig. 1. One such spectrogram may be
seen as a set of 1rmrM frequency channels in time giving the
envelope of the power spectral density of speech as

Xðm,nÞ ¼ 20log10 1�
XP

p ¼ 1

ak,ne�jmpOt

�����

�����

�1

ð1Þ

where {ak,n} is the coefficient set of a P-order predictor estimated at
the time instant n from a speech signal x(n), and t and O are the
resolutions in time and frequency. One of the m frequency-
separated channels may be seen as the timely activity of
an auditory fibre associated to a characteristic frequency fm.
The matrix X(m,n) can be seen as a two-dimensional auditory
image [18], describing the activity in time of a linear layer of CF
units in frequency. Many tools devised for image processing can be
used for the detection of time–frequency features, as CF or FM
patterns [13], as for instance simple masks w(i,j) operating on the
auditory image as

~X ðm,nÞ ¼
XI

i ¼ �I

XJ

j ¼ 0

wi,jXðm�i,n�jÞ ð2Þ

where {wij} is a (2I+1)x(J+1) mask with a specific set of weights
defined to mimic a specific function. The activity of this matrix may
be represented by a Generalized Neuromorphic Computing Unit as
the one shown in Fig. 3, where the output activity ~X ðm,nÞ is the
result of applying a weight mask w(i,j) to the inputs from X(m,n),
adding or subtracting the incoming stimuli (depending on their
excitatory or inhibitory nature coded in the specific weight) and
applying a threshold nonlinear function. These outputs will con-
stitute a new layer of channels, where m is now a positional channel
index (unit number) and n is the time index.

The lateral-inhibition filtering active in certain neuron associa-
tions in the inferior colliculus may be seen as a special case of (2)
where the weights of columns j¼1,2 are zeros and weights
w�1,0¼w1,0¼�1/2 and w0,0¼1.
Fig. 6. Top: pre-threshold activity as hypothetically measured in (A). Bottom: post-thre

broad-band spectrum.
Different neurons as the one defined in Fig. 3 organized in
consecutive layers will mimic some of the speech processes of
interest in the study (specifically formant profiling by lateral
inhibition, positive and negative formant tracking, and first and
second formant disambiguation by mutual exclusion). In the
bottom part of the figure some examples of 3�3 masks are shown.
To produce un-biased results, the weight associated to each black
square is fixed to +1/sb and the weight associated to white squares
is fixed to �1/sw, sb and sw being the number of squares in black or
white found in a 3�3 mask, respectively. It is important to remark
that the basic structure and functionality of the Generalized
Neuromorphic Computing Unit defined is specifically based on
the Hebbian Neuron [12]. The Neuromorphic Speech Processing
Architecture proposed for dynamic formant tracking based in these
units may then be described by the structure presented in Fig. 4.
This architecture is composed by different layers of specific GNCU’s
shold activity, as in (B). Compare the formant patterns produced against the input
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mimicking the physiological units found in the auditory pathways
accordingly with the description given below as follows:
�

Fig
form
LIFP: Lateral Inhibition Formant Profilers, reducing the number
of fibres firing at a given time.

�
 + fM1�k, � fM1�k: Positive and Negative Slope Formant Trackers

(K bands) detecting ascending or descending formant activity
using masks {124–376} and {421–673}.

�
 f11�k, f21�k: First and Second Energy Peak Tracker, intended

for formant detection mimicking CF neurons, using masks
{700–077}.

�
 + fM1�k1, � fM1�k1, + fM1�k2, � fM1�k2: These are integrators or

accumulators working on the inputs of previous formant tracker
integration units on certain specific bands (350–650 Hz for the
first formant, or 700–2300 Hz for the second formant).

�
 + fM1, � fM1, + fM2, � fM2: First and Second Formant Mutual

Exclusion Units (positive and negative slopes), estimating the
features FM1 and FM2 in Table 1.

�
 NB1–k: Noise Burst Integration Units ({111–666}) for wide

frequency activity working on the formant profiles.

�
 VSU: Voiceless Spotting Units. These integrate the outputs of

different SNB’s acting in separate bands to pattern the activity
of fricative consonants.

�
 WSU: Vowel Spotting Units. These integrate the activity of Sf1

and Sf2 units to detect the presence of vowels and their nature.

�
 DTU: Dynamic Tracking Units. These integrate the activity of

different dynamic trackers on the first two formants to detect
consonant dynamic features.
4. Simulating FM Units

From what has been exposed a clear consequence may be
derived: formant structure plays a major role in the vowel and
consonantal structure of speech. Formant detection, tracking and
grouping in semantic units must be a crucial role in speech
. 8. Positive and Negative Slope Tracking Units. Top: activity of +fM1�512 units detecti

ant trajectories.
understanding. Therefore the simulation of these functionalities
by neural-like simple units may be of most importance for
neuromorphic speech processing. In what follows some of the
capabilities of these structures will be shown with emphasis in the
detection of the most meaningful dynamic consonantal features.
For such, some of the structures described in the Neuromorphic
Speech Processing Architecture shown in Fig. 4 will be briefly
reviewed and simulated with the aim of offering a brief review of
the possibilities of this modelling, and the results obtained from
their activity will be presented and discussed. These are the
following:
�

ng u
Lateral Inhibition Formant Profiling Units

�
 Positive Slope Formant-Tracking Units (+ fM1�k)

�
 Negative Slope Formant-Tracking Units (� fM1�k)

�
 First-Formant Positive Detection Units (+ fM1)

�
 First-Formant Negative Detection Units (� fM1)

�
 Second-Formant Positive Detection Units (+ fM2)

�
 Second-Formant Negative Detection Units (� fM2)
As target speech a typical example illustrating fast formant
dynamics as is the sentence – Where were you while you were away –

will be modelled. The details of the architecture are the following:
K¼512 units are used as characteristic frequency outputs from LPC,
defining a resolution in frequency of little less than 8 Hz for a
sampling frequency of 8000 Hz. These 512 channels are sampled
each 5 ms to define a stream of approximately 200 pulses/s
per each.

4.1. Lateral Inhibition Formant Profiling Units

The first neuromorphic signal processing task simulated is
formant profiling from the LPC broad-band spectrogram as shown
in Fig. 5. In the figure a possible layered structure is represented
where the activity expressed by Channel Units excite an output m-
Channel Unit, and inhibit the neighbour ones. The results of
sweeping the LPC spectrogram in Fig. 1 (top) with one such layer
pwards formant trajectories. Bottom: activity of � fM1�512 units for downwards



Fig. 9. Structure of +fM300�700 and -fM300�700 units coding the activity of the first

formant f1. A similar structure may be hypothesized as well for the second formant

(+fM700�2300 and -fM700�2300). Dark synapses mean inhibition, white ones stand for

excitation. The patterns detected at each of the spots (A, B, C, D) is given in Figs. 10

and 11, respectively.
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produces the results shown in Fig. 6, where the pre-threshold
(A: top) and post-threshold activity (B: Bottom) are presented. The
pre-threshold activity shows the typical ‘‘Mexican Hat’’ behaviour.

The resource to lateral inhibition is a strategy well documented
in natural neural systems [27], fulfilling several purposes. The
transition from time–frequency detailed spatiotemporal structure
of the responses of the auditory nerve to specific CF/CF and FM/FM
responses found in the primary auditory cortex (AI) of the
moustached bat by Suga [28] indicates that some powerful
mechanism is applied to reduce spike firing rates and the number
of fibres conveying information to higher auditory centres.

It is believed that the mechanism for this compression coding
process is based in ‘‘specific lateral inhibition networks which may
exist in the antero-ventral cochlear nucleus (CN), especially invol-
ving T-Stellate cells, which exhibit fast inhibitory surrounds and a
robust representation of the input spectrum regardless of level’’
[25]. This belief is also supported by the strong reduction in spike
firing rates found in the lower levels of the auditory pathways as
compared with the firing rates in the AI areas, which suggest the
presence of a strong compression mechanism both in the time and
in the frequency domain [11].

4.2. Positive and Negative Slope Formant-Tracking Units

The Positive and Negative Slope Formant Trackers detecting
ascending or descending formants by masks {124–376} and
{421–673} in Fig. 3 (bottom) correspond to the cell columns to
the uppermost right-hand side of Fig. 4, labelled as + fM1�k and
� fM1�k, where k is the respective order of the frequency bin bands
being searched, and the sign +or – refers to the positive or negative
sense of the slope. In the specific case shown in simulations
throughout the paper the dimensions of the + fM and � fM units
are 7�7, which means that the connectivity in frequency extends
from +3 to �3 neighbour neurons, whilst the delay lines in the
Pauser units responsible for the delay go from 0 to 30 ms, as 5 ms is
the delay unit (corresponding roughly to a maximum firing rate of
200 spikes/s). Fig. 7 shows a possible morphology of the delay and
detecting units, and their outputs to the same speech fragment
considered above. Other techniques being studied for the deter-
mination of the mask coefficients are back-propagation NN’s,
although the results presented here are for pre-determined
(firmware) masks.

The resulting activity as detected per each of the 512 channel
units is given in Fig. 8. It may be seen that the strong activity
compression produced from lateral inhibition results in a few units
firing simultaneously at a given time instant.

In the general outcome, it may be said that the units detect the
main episodes of formant ascent and descent with enough accu-
racy, although a certain amount of noisy artefacts may be present
due to the glittering nature of formant detection in itself. Never-
theless these problems can be solved easily by massive integration
(averaging) and thresholding, as will be seen in the sequel.

4.3. First/Second-Formant Positive/Negative Detection Units

The structure and operation of positive and negative formant
slope detectors as the ones summarized in the middle level of Fig. 4
(Dynamic Tracking Units) will be discussed here and some results
shown. Formant theory of speech perception is mainly based on
psychophysical grounds. Its plausibility comes from the facts that
vowel structures play the role of two-frequency robust primitive
communication codes [7]. Therefore resources to distinguish vowel
from non-vowel pitched sounds must be available at the level of
auditory interpretation centres located in the auditory cortex.
These must be linked to the structures providing information
about formant displacements or trajectories when dealing with
dynamic consonantal sounds of speech with share similarities
with the detection of FM sweeps in the bat’s auditory system [28].
As the possibilities are both for ascending or descending first and
second formants, at least four different types of formant slope
tracking units should be hypothesized. The real existence and the
number of these structures present in the human auditory cortex
remains as a question put forth to neurophysiologists [23]. In Fig. 9
the structure of two of such units interlocked for mutual exclusion
is depicted.

As the frequency distribution is linear, the number of channels
integrated for the first formant (for a band of 300–700 Hz) is around
52, whereas for the second formant (for a band of 700–2300 Hz) is
around 205. The study of nonlinear (logarithmic) distributions
based on Mel-scaling is left for future research. Conceptually
formant ascent and descent are mutually excluding, therefore
mutual exclusion mechanisms should be implemented through
lateral inhibition. This is provided by the inter-locking inhibitory
synapses running from each axon’s output (B and D) to the bodies of
the counterpart unit (�D to A and �B to C). In the simulations it is
assumed that the stronger output inhibits the weaker.

In this way inconsistencies are removed from the resulting firing
activity shown in the templates from Figs. 10–13.



Fig. 10. Top: firing activity accumulated at the input (A) of the First-Formant Positive-Slope Unit (thin spiky pattern). Integration of the firing activity (B) at the input (bold line).

The threshold is given as a reference. Bottom: activity of the First Formant Positive-Slope Integration Unit +fM1 showing the time intervals where the first formant ascends.

Fig. 11. Top: firing activity accumulated at the input (C) of the First-Formant Negative-Slope Unit (thin spiky pattern). Integration of the firing activity (D) at the input (bold

line). The threshold is given as a reference. Bottom: activity of the First Formant Negative-Slope Integration Unit � fM1 showing the time intervals where the first formant

descends.
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The top part of Fig. 10 shows the activity present at the input of
the First-Formant Positive-Slope Tracking Unit as provided by 52
synaptic connections coming out from the Positive-Slope Tracking
Units in the band 300–700 Hz, which corresponds to the band of
frequencies where the average first formant can be found.

It may be seen that barely two or three of these synapses may
be firing at a time. The Unit is based in the Mculloch-Pitts para-
digm [17] including integration and threshold functionalities,
symbolized in Fig. 4 as (

R
), producing the output line in bold.

When its value jumps over the threshold (e) the output (B) is
activated high.
The correspondence between (A) jumping over the threshold
and the activation of (B) is not straightforward, as the activation
(C) of the First-Formant Negative-Slope Tracking Unit in Fig. 11 has
to be taken also into account, because it will be trying to inhibit the
Positive-Slope Tracking Unit at the same time. As a result, both
(C) and (D) outputs will mark intervals where either one or the
other output will be active, or both of them will remain inactive
(when the formant remains stable, as in certain vowels). A similar
structure activated with synapses in the band 700–2300 Hz
must be built for the detection of second formant dynamics
(not shown). The results produced by one such structure are given
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in Figs. 12 and 13. In this case the input activity detected in the Unit
soma is a little bit larger, as in some instants up to four synapses are
active at a time. Nevertheless, the output will only be activated
when the accumulated stimuli (integrated with a certain forgetting
factor) jump over the threshold (signalled by a horizontal line).
As before, the output activity of both interlocked Units does not
correspond strictly to their inputs, as the mutual exclusion
mechanism excludes the possibility of simultaneous positive
outputs. A general criticism to this formant-oriented detection
strategy is that formants are not so neatly separated by a given
sharp boundary around 700 Hz in the cortex as neatly exposed
here. It is important to consider that formant grouping may be
carried out by large sets of spatial addition units picking-up
information more or less randomly from Slope Tracking Units
and interacting among them in some winner-takes-all kind of
Fig. 12. Top: firing activity accumulated at the input of the Second-Formant

Positive-Slope Unit (thin spiky pattern). Integration of the firing activity at the

input (bold line). The threshold is given as a reference. Bottom: activity of the Second

Formant Positive-Slope Integration Unit + fM2 showing the time intervals where the

second formant ascends.

Fig. 13. Top: firing activity accumulated at the input of the Second-Formant Negative-Slo

The threshold is given as a reference. Bottom: Activity of Second Formant Negative-Slope I
contests, this being part of the Speech Understanding Adaptation
during Language Acquisition taking place in early infancy. Anyway,
the intention of the research, which is essentially to show that small
neuromorphic structures involving simple and biologically plausible
resources can cope with the task, is more than fulfilled. Other similar
structures could do the job as well for higher formants, although this
aspect is not as neatly related to speech understanding. Its existence
could be more in connection with other psychophysical listeners’
abilities, as the capability to track the speaker’s identity [24].
4.4. Application to Neuromorphic Phonetic Labelling

An example on how specifically Speech Processing may benefit
from Neuromorphic Computing will be given in the present section.
Phonetic Labelling is a technique consisting in highlighting or spotting
specific segments of speech accordingly with some property, as the
presence of voicing, nasality, or even spotting vowels, specific
phonemes and even words. It is very useful for certain applications
as speech annotation, audio and video diarization, or forensic studies,
among others. In phonetic labelling features as the ones referred in
Table 1 are used as referencing marks for spotting. The first row of the
table shows the IPA code of the corresponding phoneme, whereas the
second row gives the corresponding ASCII-IPA equivalent, also known
as Kirshenbaum code [3,4].

The specific example studied as a working case in the present
paper was selected for the spotting of dynamic consonants and
approximants as [j, o], which have been set as targets within the
speech frame used. The dynamic descriptors for the descending
glides as found in [oe] and [ju] are, respectively, NFM1¼ ‘0’,
PFM1¼ ‘1’, NFM2¼ ‘0’, PFM2¼ ‘1’ and NFM1¼ ‘0’, PFM1¼ ‘0’,
NFM2¼ ‘1’, PFM2¼ ‘0’. The complete outcome to the LPC spectro-
gram in Fig. 1 (input) reproduced in the top part of Fig. 14 is given as
the four outputs labelling the first and second formant ascents and
descents as in Fig. 14 middle and bottom templates. It may be seen
that the first and second negative and positive slope tracking
outputs (NFM1, PFM1, NFM2, PFM2) overlap almost perfectly as
complementary signals (when one is high its complementary is
pe Unit (thin spiky pattern). Integration of the firing activity at the input (bold line).

ntegration Unit –fM2 showing the time intervals where the second formant descends.



Fig. 14. Top: output of activity at the output of LIFP Units in the band of the second formant. Middle: output of the Second Formant Integration Unit + fM2 reproducing the

positive slope intervals in the second formant. Bottom: value of the slope detected on the given interval.
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down, and vice versa). These four signals are used to designate the
four possible states of rows FM1 and FM2 of Table 1. For instance, a
situation where FM1¼ ‘a’ and FM2¼ ‘d’ as is the case in voiced
phonemes /ĵ/, and /z/ would be signalled by NFM1¼ ‘0’, PFM1¼ ‘1’,
NFM2¼ ‘1’, PFM2¼ ‘0’. Specifically, for the speech frame being
labelled, the presence of the phoneme [oe] is spotted by the
combination PFM1¼ ‘1’ and PFM2¼ ‘1’, appearing in the intervals
(0.04–0.09, 0.24–0.32, 0.72–0.84, 1.15–1.18 and 1.42–1.52). The
reader may check that this is precisely the number of times the
phonetic pattern targeted appears in the reference speech frame.
These results show the way of implementing the paradigms in
Table 1. The utility of this methodology is to be found in the
automatic phonetic labelling of the speech trace, as shown in this
study, as well as in typical tasks related with Cognitive Audio
Processing [20].
5. Discussion and conclusions

Through the present paper it has been shown that formant-based
speech processing may be carried out by well-known bio-inspired
computing units. Special emphasis has been placed in the description
of the biophysical mechanisms which are credited for being respon-
sible of formant dynamics detection, as related to the perception of
certain consonantal sounds.

A special effort has been devoted to the definition of a plausible
neuromorphic or bio-inspired architecture composed of multiple
modules of a general purpose computing unit. The use of such units in
consonantal formant dynamics characterization as positive and
negative frequency tracking and grouping has also been presented.
The structures studied correspond roughly to the processing centres
in the Olivar Nucleus and the inferior colliculus. The systemic bottom–
up building of layered structures reproducing dynamic feature
detection related to plausible neuronal circuits in the auditory cortex
has also been introduced. Results from simulations explaining the
behaviour of these layered structures have been presented as well,
confirming that robust formant trackers built from simple Hebbian
units may carry out important tasks in speech processing eventually
related with the perception of dynamic consonants. This work may
help in both understanding better how neural circuits may work in
the brain, as well as in how speech processing can benefit from this
understanding. But this is only a first step in the progress towards a
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systemic comprehension of what is language processing in the human
brain [10,11,20,21,25,26]. The study of short-time memory-like
structures found in the upper levels of the brain, and especially the
columnar structures of the auditory cortex [16] using low order
regressors is fundamental for phonemic parsing and deserve an
extensive further attention. The lower and mid auditory pathways
have been intensively and extensively researched, and a good deal of
helpful and useful knowledge of use in Neuromorphic Speech
Processing has been produced [21]. Nevertheless the cortical circuits
involved in speech processing lack a similar detailed description, their
functionality being a great challenge even nowadays. Through the
works of Mountcastle [19] some kind of functionality could be
inferred related mainly with the short memory capability of bidirec-
tional linear structures reproducing cortical columns, essential for the
parsing of phonetic sounds leading to the emergence of the word as a
semantic unit. This idea was discussed during the celebration of a
colloquium directed by Prof. Mira with some other colleagues in
IWINAC07 at La Manga del Mar Menor (Spain) [8]. In that occasion
Prof. Mira insisted in that the leading work of Rafael Lorente de No
[16] should be revisited in relation with the topic of short memory
phonetic parsing in the auditory cortex. Lorente de No was one of the
most outstanding disciples of Santiago Ramón y Cajal [22], and lived
and worked in the USA for some five decades till his death in Tucson,
AZ in 1990. It seems that Lorente de No’s work eventually inspired
that of Mouncastle. During two other occasions in the early spring of
2008 Prof. Mira insisted in that Lorente de No’s should be brought
forth again to the interest of modern Neuromorphic Computing for
the proposal of new mechanisms in speech processing and under-
standing. Shortly after, Prof. Mira passed away (August 2008) leaving
this new challenge open for the attention of the neuromorphic speech
research community. Since then, new steps have been given forward
in pursuing a better comprehension on how speech is processed in the
higher auditory paths. The ambitious Cajal-Blue Brain [5] has started
its first steps through a collaboration programme between Instituto
Ramón y Cajal and Universidad Politécnica de Madrid. One of its
objectives is to get a better description of the neuronal structures by
reverse engineering [2] which can eventually help in shedding new
light on how neuronal circuits work in certain specific tasks. Sound
and Image Processing are amongst the most challenging ones which
may benefit from this long-run initiative. The programme to be
covered is aimed to disentangle neural structures, explain biophysical
and biochemical interactions, yield pace to systemic abstractions, and
on a way-back, build-up a complete neuro-inspired structure explain-
ing most of the functionalities observed both under the biophysical
and the psychophysical points of view. The task is cumbersome and
resource expensive, as must rely on high performance computing due
to the complexity and low-level description required in many of
the tasks. But the rewards can be enormous, as not only systemic
behaviour is sought. A better understanding of simple and complex
brain structures is expected both in behavioral and functional terms.
This understanding may have a direct impact in developing advanced
helps for the deaf, blind and sensory-motor impaired, improve speech
and speaker recognition, language acquisition, and many others.
This is a task in which early predecessors are to be acknowledged.
In memoriam: Cajal, Lorente de No, Mira.
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[9] P. Gómez, J.M. Ferrández, V. Rodellar, R. Fernández, Time–frequency repre-
sentations in speech perception, Neurocomputing 72 (2009) 820–830.

[10] S. Greenberg, W.H. Ainsworth, Auditory processing of speech, in: S. Greenberg,
W.H. Ainsworth (Eds.), Listening to Speech: An Auditory Perspective, Lawrence
Erbaum Associates, 2006, pp. 3–17.

[11] S. Greenberg, W.H. Ainsworth, Speech processing in the auditory system:
an overview, in: W.A.S. Greenberg (Ed.), Speech Processing in the Auditory
System, Springer, New York, 2004, pp. 1–62.

[12] D.O. Hebb, in: The Organization of Behavior, Wiley Interscience, New York,
1949 (reprinted 2002).

[13] B. Jähne, Digital Image Processing, Springer, Berlin, 2005.
[14] E.R. Kandel (Ed.), Principles of Neural Science, McGraw-Hill, New York, 2000.
[15] A. Krishnan, Y. Xu, J. Grandour, P. Cariani, Encoding pitch in human brainstem

is sensitive to language experience, Cognitive Brain Research 25 (2005)
165–168.

[16] R. Lorente de No, Cerebral cortex: architecture, intracortical connections,
motor projections, in: J.F. Fulton (Ed.), Physiology of the nervous system, 3rd
Edn, Oxford University Press, 1949, pp. 288–330 (Chapter 15).

[17] W. McCulloch, W. Pitts, A logical calculus of ideas immanent in nervous
activity, Bulletin of Mathematical Biophysics 5 (1943) 115–133.

[18] G. Monaci, P. Vandergheynst, F.T. Sommer, Learning bimodal structure in
audio–visual data, IEEE Transactions on Neural Networks 20 (2009)
1898–1910.

[19] V.B. Mountcastle, The columnar organization of the neocortex, Brain 120
(1997) 701–722.

[20] R. Munkong, B.H. Juang, Auditory perception and cognition, IEEE Signal
Processing Magazine 98 (2008) 98–117.

[21] A. Palmer, S. Shamma, Physiological representation of speech, in: S. Greenberg,
W. Ainsworth, A. Popper (Eds.), Speech Processing in the Auditory System,
Springer, New York2004, pp. 163–230.

[22] S. Ramón y Cajal, (1899–1904) Textura del Sistema Nervioso del Hombre y de
los Vertebrados, Madrid: Imprenta y Librerı́a de Nicolás Moya, reprinted in
English as: Histology of the Nervous System of Man and Vertebrates (Oxford
University Press, 1995).

[23] J.P. Rauschecker, S.K. Scott, Maps and streams in the auditory cortex: nonhu-
man primates illuminate human speech processing, Nature Neuroscience 12-6
(2009) 718–724.

[24] P. Rose, Y. Kinoshita, T. Alderman, Realistic extrinsic forensic speaker discri-
mination with the diphthong/aI/, in: Proceedings of the 11th Australian
International Conference on Speech Science & Technology 2006, pp. 329–334.

[25] S. Shamma, On the role of space and time auditory processing, Trends in
Cognitive Sciences 5–8 (2001) 340–348.

[26] S. Shamma, Physiological foundations of temporal integration in the percep-
tion of speech, Journal of Phonetics 31 (2003) 495–501.

[27] Shepherd, G.M., The Synaptic Organization of the Brain (Oxford University
Press, New York, 2004).

[28] N. Suga, Basic Acoustic patterns and neural mechanisms shared by humans and
animals for auditory perception, in: S. Greenberg, W.H. Ainsworth (Eds.),
Listening to Speech: An Auditory Perspective, Lawrence Erbaum Associates,
2006, pp. 159–181.

[29] H.M. Sussman, H.A. McCaffrey, S.A. Mathews, An investigation of locus
equations as a source of relational invariance for stop place categorization,
Journal of the Acoustical Society of America 90 (1991) 1309–1325.

[30] P. Yin, L. Ma, M. Elhilali, J. Fritz, S. Shamma, Primary auditory cortical responses
while attending to different streams, in: B. Kollmeier et al.(Ed.), Hearing: From
Sensory Processing to Perception, Springer, Heidelberg, 2007, pp. 257–265.

http://www.arts.gla.ac.uk/IPA/ipachart.html
http://www.kirshenbaum.net/IPA/ascii-ipa.pdf
http://cajalbbp.cesvima.upm.es/
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Agustı́n Álvarez-Marquina was born in Madrid, Spain
in 1969. He received the M.Sc. degree in Computer
Science in 1994 and the Ph.D. degree in Computer
Science from the Universidad Politécnica de Madrid,
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